Применение машинного обучения для прогнозирования субъективного благополучия человека

Применение машинного обучения для прогнозирования субъективного благополучия человека

Интересное сегодня

Психологическое здоровье спортсменов: адаптация и валидация ...

Введение Спортсмены сталкиваются с множеством психологических трудностей на пути к совершенству, вкл...

История Сары: Выбор видеть мир лучше

Однажды польская еврейка по имени Сара рассказала мне эту историю: В начале Второй мировой войны, ко...

Намерение искать помощь при психических заболеваниях и связа...

Введение Психические заболевания становятся все более распространенными, затрагивая около 450 миллио...

Краткая форма анкетирования лидерских добродетелей: адаптаци...

ВведениеЭтические скандалы, произошедшие в недавнем прошлом, укрепили необходимость соблюдения этики...

Мизофония: Понимание и Преодоление Вызовов

Добро пожаловать в Линию Исследования, где нашей первой темой является сам блог. Мизофония — это, ве...

Использование непривлекательной альтернативы для стимулирова...

Введение COVID-19 остается актуальной проблемой здравоохранения, с сезонными колебаниями уровня забо...

figure 1
figure 1
figure 2
figure 2
figure 3
figure 3
Thumbnail 1
Thumbnail 2
Thumbnail 3
Thumbnail 4
Thumbnail 5
Thumbnail 6

Введение

Субъективное благополучие является важным показателем в социальных науках, но текущие методы прогнозирования имеют ограниченную точность. В этом исследовании используются алгоритмы машинного обучения на основе деревьев решений для улучшения прогнозирования самооценочного благополучия. Исследование охватывает данные более миллиона респондентов из Германии, Великобритании и США за период с 2010 по 2018 год.

Читать короткую версию
Кликните еще раз для перехода

Цели исследования

Исследование ставит три основных вопроса:

  • Превосходят ли алгоритмы машинного обучения традиционные линейные модели в прогнозировании благополучия?
  • Совпадают ли переменные, выделенные алгоритмами машинного обучения, с теми, что подчеркиваются в литературе?
  • Могут ли алгоритмы машинного обучения помочь в разрешении спорных вопросов о форме зависимости благополучия от дохода и возраста?

Методы и данные

Исследование использует данные из трех национальных опросов: Германской социально-экономической панели (SOEP), Британского лонгитюдного исследования домохозяйств (UKHLS) и Американского ежедневного опроса Gallup. Были применены четыре алгоритма: Ordinary Least Squares (OLS), Least Absolute Shrinkage and Selection Operator (LASSO), Random Forests (RF) и Gradient Boosting (GB).

Результаты

Алгоритмы машинного обучения показали лучшую производительность по сравнению с OLS, особенно когда использовались расширенные наборы переменных. Важнейшими факторами благополучия оказались здоровье, экономические условия, личностные черты и личные отношения. Была подтверждена U-образная зависимость благополучия от возраста и насыщение эффекта дохода в Германии и Великобритании, но не в США.

Обсуждение

Исследование показывает, что алгоритмы машинного обучения могут значительно улучшить прогнозирование благополучия, особенно при использовании большого числа переменных. Однако, даже с использованием всей доступной информации, остается около половины необъяснимой вариации в благополучии. Будущие исследования могут включать комбинацию обучения с учителем и без учителя, а также применение машинного обучения для выявления причинных факторов благополучия.

Заключение

Машинное обучение представляет собой мощный инструмент для прогнозирования субъективного благополучия, который может дополнить и улучшить традиционные методы. Однако, для полного понимания благополучия необходимы дальнейшие исследования, особенно в контексте развивающихся стран.

Короткие версии статей можно найти в телеграм-канале.

Посмотреть канал
Кликните еще раз для перехода