Нормальное распределение (Колоколообразная кривая): Основные понятия и применение

Нормальное распределение (Колоколообразная кривая): Основные понятия и применение

Интересное сегодня

Раскрытие молчания: использование данных о социальных взаимо...

Суицидальные мысли и поведение (СМП) сильно стигматизированы и являются табу. Несмотря на цензуру, о...

Мигрень и сопутствующие симптомы: как улучшить качество жизн...

Введение Мигрень — это тяжелое неврологическое расстройство, характеризующееся повторяющимися головн...

Как преодолеть вражду с родным братом или сестрой

Враждебные отношения с родным братом или сестрой — это болезненная реальность для многих людей. Посл...

Наблюдение и имитация движений рук при болезни Паркинсона: в...

Введение в проблему болезни Паркинсона Болезнь Паркинсона (БП) представляет собой нейродегенеративно...

Психосоциальное влияние на пасторов пятидесятнических церкве...

Введение Данное исследование представляет собой интерпретативный феноменологический анализ психосоци...

Меньше точности в предсказаниях ментальных состояний для вне...

Введение Общества становятся все более поляризованными, что частично обусловлено недоразумениями отн...

График колоколообразной кривой, изображающий нормальное распределение производительности. Образовательная схема с метками для измерения ожиданий или анализа процентного соотношения.
График колоколообразной кривой, изображающий нормальное распределение производительности. Образовательная схема с метками для измерения ожиданий или анализа процентного соотношения.
Thumbnail 1
Оригинал исследования на сайте автора
Читать короткую версию
Кликните еще раз для перехода

Введение в нормальное распределение (колоколообразная кривая)

Колоколообразная кривая, также известная как нормальное распределение или распределение Гаусса, представляет собой симметричное распределение вероятностей в статистике. Она изображает график, где данные группируются вокруг среднего значения, с наибольшей частотой в центре и постепенным уменьшением к краям.

Свойства нормального распределения

Нормальное распределение — это непрерывное распределение вероятностей, симметричное относительно среднего значения. Правая сторона центра является зеркальным отражением левой стороны.

  • Площадь под кривой нормального распределения представляет вероятность, и общая площадь под кривой равна единице.
  • Большинство значений данных в нормальном распределении группируются вокруг среднего, а чем дальше значение от среднего, тем реже оно встречается.
  • Хвосты кривой асимптотичны, то есть они приближаются к оси X, но никогда её не пересекают.
  • Для идеального нормального распределения среднее значение, медиана и мода совпадают и визуально представлены вершиной кривой.

Нормальное распределение часто называют колоколообразной кривой из-за формы графика плотности вероятности. Оно также известно как распределение Гаусса, в честь немецкого математика Карла Гаусса, который впервые его описал.

Нормальное распределение vs. Стандартное нормальное распределение

Нормальное распределение определяется двумя параметрами: средним значением и дисперсией. Нормальное распределение со средним значением 0 и стандартным отклонением 1 называется стандартным нормальным распределением.

Рисунок 1. Стандартное нормальное распределение (СНР).

Это распределение используется для построения таблиц нормального распределения.

Почему нормальное распределение важно?

Колоколообразная кривая — общая черта природы и психологии

Нормальное распределение — самое важное распределение вероятностей в статистике, потому что многие непрерывные данные в природе и психологии образуют колоколообразную кривую при компиляции и графическом представлении.

Например, если мы случайно выберем 100 человек, мы ожидаем увидеть нормальное распределение для многих непрерывных переменных, таких как IQ, рост, вес и кровяное давление.

Параметрические тесты требуют нормального распределения данных

Самые мощные (параметрические) статистические тесты, используемые психологами, требуют, чтобы данные были нормально распределены.

Если данные не напоминают колоколообразную кривую, исследователи могут использовать менее мощные статистические тесты, называемые непараметрическими.

Преобразование сырых оценок в z-оценки

Мы можем стандартизировать значения нормального распределения (сырые оценки), преобразуя их в z-оценки.

Это позволяет исследователям определить долю значений, которые попадают в определённое количество стандартных отклонений от среднего (например, рассчитать эмпирическое правило).

Что такое формула эмпирического правила?

Эмпирическое правило в статистике позволяет исследователям определить долю значений, которые попадают в определённые расстояния от среднего.

Эмпирическое правило часто называют правилом трёх сигм или правилом 68-95-99.7.

  • 68% данных попадают в первое стандартное отклонение от среднего. Это означает, что вероятность случайного выбора оценки между -1 и +1 стандартными отклонениями от среднего составляет 68%.
  • 95% значений попадают в два стандартных отклонения от среднего. Это означает вероятность 95%.
  • 99.7% данных попадают в три стандартных отклонения от среднего. Это означает вероятность 99.7%.

Как проверить данные на нормальность?

Статистическое программное обеспечение (например, SPSS) может проверить, нормально ли распределены ваши данные, вычислив три меры центральной тенденции.

Если среднее значение, медиана и мода очень близки, данные, скорее всего, следуют колоколообразному распределению.

Также рекомендуется использовать график частот, чтобы визуально оценить форму данных. В SPSS можно добавить кривую распределения к гистограмме: Elements > Show Distribution Curve.

Нормальные распределения становятся более очевидными при более точных измерениях и больших выборках.

Можно также вычислить коэффициенты, которые показывают размер хвостов распределения относительно центра кривой. Например, тесты Колмогорова-Смирнова и Шапиро-Уилка можно рассчитать в SPSS.

Эти тесты сравнивают ваши данные с нормальным распределением и дают p-значение. Если оно значимо (p < 0.05), данные отличаются от нормального распределения (в этом случае мы не хотим значимого результата и нужно p-значение выше 0.05).

Дополнительная информация

Эксцесс нормального распределения: 0 или 3?

Нормальное распределение имеет эксцесс, равный 3. Однако иногда используют "избыточный эксцесс", который вычитает 3 из эксцесса распределения для сравнения с нормальным распределением.

В этом случае избыточный эксцесс нормального распределения будет 3 − 3 = 0.

Таким образом, нормальное распределение имеет эксцесс 3, но его избыточный эксцесс равен 0.

Короткие версии статей можно найти в телеграм-канале.

Посмотреть канал
Кликните еще раз для перехода

Вальмонт Концентрат 3D Увлажнение для лица 30 мл

Вальмонт Регенетик Концентрат для лица 3D увлажнения в объёме 30 мл помогает улучшить гидратацию кож...

Мастофит Эвалар — поддержка здоровья молочных желез

Мастофит Эвалар — комплексная добавка для поддержания здоровья молочных желез. Содержит концентрат б...

Зубная щетка Colgate Zig-Zag Plus средняя – купить онлайн

Зубная щетка Colgate Zig-Zag Plus средней жесткости эффективно удаляет налет благодаря уникальной фо...

Аллегра 120 мг: таблетки от аллергического ринита | Аптека

Аллегра 120 мг — современный антигистаминный препарат на основе фексофенадина для борьбы с симптомам...

Корвалол капли 25 мл для сна и снятия спазмов

Корвалол капли 25 мл — комбинированное седативное и спазмолитическое средство, помогающее при бессон...

Купить Сандра таб. подъяз. гомеопат. 250 мг №30 в аптеке

Сандра – гомеопатический препарат комплексного действия. Таблетки подъязычные 250 мг, 30 шт. Не взаи...