
Интересное сегодня
Как практика Тонглен-медитации повышает сострадание и снижае...
Роль сострадания в профессиональной средеСострадание — это способность распознавать страдания других...
Сила хвата и здоровье: связь с физическим и психическим сост...
Введение в исследование силы хвата среди вынужденно перемещенных лиц Мышечная сила представляет собо...
Как музыка передает социальные эмоции: исследование 750 музы...
Музыка как инструмент передачи социальных эмоцийЛюди легко распознают базовые эмоции в музыке — радо...
Как стили привязанности влияют на отношения: безопасный и не...
Безопасная и небезопасная привязанность в отношениях В психологии теория привязанности описывает эмо...
Определяющие факторы тревоги о будущем в Южной Корее: анализ...
Введение Неопределенность будущего в современном обществе способна вызывать тревогу, особенно в усло...
Тёмная триада личности: как распознать манипулятора и защити...
Что такое Тёмная триада личности? Если вы когда-либо чувствовали, что вами манипулируют или использу...
Введение
Опросники с самоотчетами должны быть не только психометрически обоснованными, но и краткими, чтобы минимизировать усталость респондентов. Это особенно важно в исследованиях здоровья и профилактики. Традиционные методы сокращения опросников, такие как выбор вопросов на основе корреляций или факторных нагрузок, имеют ограничения. Алгоритм муравьиной колонии (ACO) позволяет преодолеть эти ограничения, учитывая несколько критериев одновременно.
Методология
Участники и данные
Исследование объединило данные трех проектов (N=1,834), в которых участвовали потребители алкоголя из общей популяции и больниц Германии. Средний возраст участников — 31.4 года, 19% — женщины.
Алгоритм ACO
ACO имитирует поведение муравьев, ищущих кратчайший путь к пище. В контексте опросников «муравьи» — это случайные подвыборки вопросов, а «феромоны» — критерии оптимизации (например, индексы соответствия модели). Алгоритм написан на R и доступен в дополнительных материалах.
Критерии оптимизации
- CFI (Comparative Fit Index) ≥ 0.96
- RMSEA (Root Mean Square Error of Approximation) ≤ 0.06
- Надежность (ω Макдональда) ≥ 0.9
- Корреляция с полной шкалой ≥ 0.85
Результаты
Сравнение шкал
ACO создал 10-пунктовую версию ADBS, которая превзошла полную (26 пунктов) и существующую короткую версию по:
- Соответствию модели (CFI = 0.996, RMSEA = 0.039)
- Надежности (ω = 0.89–0.90)
- Сохранению структуры факторов
Контент-анализ
Новая шкала сместила акцент с социальных аспектов (например, «быть общительным») на последствия рискованного употребления (например, «попадание в неприятности»).
Обсуждение
ACO доказал эффективность для создания коротких шкал, но требует:
- Точной настройки параметров (число «муравьев», скорость испарения феромонов).
- Перекрестной валидации на независимых выборках.
- Учета теоретической обоснованности вопросов.
«ACO — это не волшебная палочка: качество выходных данных зависит от входных»
Заключение
Исследование предоставляет готовый инструмент для оптимизации опросников в R, открывая новые возможности для персонализированной оценки в здравоохранении.