Интересное сегодня
Шимпанзе зевают в ответ на андроида: новое исследование неве...
Зевающий андроид вызывает ответную реакцию у шимпанзе Новое исследование Университета Сент-Джорджа в...
Как коучинг помогает справиться с чрезмерной занятостью
Введение в проблему чрезмерной занятости В продолжение статьи о коучинге, известный коуч Ким Морган ...
Шон «Пафф Дэдди» Комбс осужден за насилие: психология абьюза...
Шон Комбс признан виновным в насилии над бывшей девушкой Музыкальный магнат Шон «Пафф Дэдди» Комбс н...
Как знание своей ценности меняет жизнь
ВведениеЧто, если ключ к полноценной и подлинной жизни не связан с богатством, славой или количество...
Как третьи места снижают риск насилия и травм у детей: иссле...
Введение Профилактика насилия критически важна для улучшения общественного здоровья, поскольку оно н...
Влияние социокультурного стресса на психическое здоровье мат...
Введение Иммигранты, часто воспринимаемые как социальные аутсайдеры, сталкиваются с проблемам...
Введение
В современную цифровую эпоху люди часто взаимодействуют с несколькими устройствами одновременно, что значительно меняет способы выражения эмоций и общения. Полученные данные помогут продвинуть исследования в области социальной психологии и взаимодействия человека с компьютером (HCI), что повлияет на дизайн цифровых платформ для поддержки более осмысленных эмоциональных и социальных взаимодействий.
Анализ настроений и распознавание эмоций
Анализ настроений (SA) позволяет определить эмоции, отношение и чувства людей к определенным объектам, таким как деятельность, люди, услуги, организации, продукты и темы. Распознавание эмоций — это подраздел SA, который прогнозирует конкретные эмоции, а не просто классифицирует их как положительные, отрицательные или нейтральные.
Методы обработки естественного языка
Эмоции выражаются различными способами: через текст, жесты, речь и мимику. Распознавание эмоций в тексте — это задача классификации, основанная на методах обработки естественного языка (NLP). NLP улучшает производительность моделей машинного обучения, комбинируя синтаксические и семантические особенности текста.
Методология
В исследовании используется модель SPIEEPCCOADL, которая сочетает алгоритм оптимизации раков (COA) и глубокое обучение (DL) для анализа социально-психологического влияния на эмоциональное выражение в тексте.
Предварительная обработка текста
Этап включает:
- Очистку данных (удаление пунктуации, URL-адресов, стоп-слов).
- Токенизацию (разделение текста на слова).
- Стемминг и лемматизацию (приведение слов к базовой форме).
- Нормализацию (приведение слов к стандартному виду).
Векторизация слов с помощью FastText
FastText используется для создания векторных представлений слов, учитывая их морфологическую структуру. Это позволяет модели лучше понимать редкие и сложные слова.
Классификация эмоций с использованием вариационного автоэнкодера (VAE)
VAE применяется для обучения модели на скрытых представлениях текста, что улучшает классификацию эмоций. Алгоритм COA оптимизирует гиперпараметры VAE, повышая точность модели.
Результаты
Модель SPIEEPCCOADL была протестирована на наборе данных из 39 173 текстов с 12 эмоциональными метками. Результаты показали:
- Точность (accuracy): 99.07%.
- Precision: 92.33%.
- Recall: 76.67%.
- F1-мера: 78.40%.
Заключение
Модель SPIEEPCCOADL демонстрирует высокую эффективность в распознавании эмоций в тексте. Однако существуют ограничения, такие как чувствительность к шуму в данных и сложность обработки мультиязычных текстов. В будущих исследованиях планируется улучшить модель для работы в реальном времени и с разнообразными языковыми данными.