Интересное сегодня
Как религиозные убеждения влияют на уровень счастья: исследо...
Введение Концепция счастья определяется как комплексная оценка и особый духовный опыт, формируемый л...
Поддержка родителей в развитии стратегий регуляции эмоций у ...
Введение в исследованиеРодители и основные опекуны играют ключевую роль в развитии способностей дете...
Майндфулнес-ориентированные программы для женщин с травмой и...
Коморбидность, связанная с травмой: серьезная угроза общественному здоровью Расстройства, связа...
Проблемы и Validity в Тестах на Распознавание Лиц
ВведениеИсследователи всё больше интересуются изучением степени индивидуальных различий в способност...
Дети родителей с шизофренией или биполярным расстройством: р...
Дети родителей с шизофренией или биполярным расстройством: риски и защитные факторы Новое долгосроч...
Как контекст боевых действий влияет на психическое здоровье ...
Новое исследование норвежских ветеранов опровергает устоявшееся мнение о том, что убийство в бою неи...
Методы исследования поведения: Надежность метрик обучения
В статье, опубликованной в журнале Behavior Research Methods, рассматриваются различные методы вычисления надежности метрик обучения на основе времени реакции и точности. Исследование включает анализ коэффициента Кронбаха, корреляции Пирсона, доверительных интервалов и бутстреп-анализа.
Метрики надежности для оценок обучения на основе времени реакции
Рисунок 2 иллюстрирует метрики надежности для оценок обучения, основанных на времени реакции. Четыре панели показывают результаты четырех методов вычисления надежности, которые различаются по выбору предобработки. В каждой панели коэффициент Кронбаха наверху панели показывает полученное значение альфа от простого последовательного назначения испытаний и его 95% доверительный интервал, рассчитанный с помощью процедуры Фельдта.
Диаграммы рассеяния показывают оценки обучения, сырую корреляцию между оценками обучения для двух разделов, с одной точкой, соответствующей одному субъекту. Оценки обучения выражены в единицах различий во времени реакции для двух типов триплетов. Линия тренда показывает линейную подгонку, полосы соответствуют 95% доверительному интервалу. Пунктирная линия показывает линию тождества. Мы также указываем корреляцию Пирсона для двух половин и ее p-значение, а также 95% доверительный интервал.
Гистограммы показывают результаты двух перестановочных анализов. Слева показано распределение коэффициентов Кронбаха, полученных при повторном отборе проб, вместе с их средним значением. Справа показано бутстреп-распределение коэффициентов Кронбаха вместе с его средним значением и бутстреп-значениями 95% доверительного интервала.
Метрики надежности для оценок обучения на основе точности
Рисунок 3 иллюстрирует метрики надежности для оценок обучения, основанных на точности. Четыре панели показывают результаты четырех методов вычисления надежности, которые различаются по выбору предобработки. В каждой панели коэффициент Кронбаха наверху панели показывает полученное значение альфа от простого последовательного назначения испытаний и его 95% доверительный интервал, рассчитанный с помощью процедуры Фельдта.
Диаграммы рассеяния показывают оценки обучения, сырую корреляцию между оценками обучения для двух разделов, с одной точкой, соответствующей одному субъекту. Оценки обучения выражены в единицах различий во времени реакции для двух типов триплетов. Линия тренда показывает линейную подгонку, полосы соответствуют 95% доверительному интервалу. Пунктирная линия показывает линию тождества. Мы также указываем корреляцию Пирсона для двух половин и ее p-значение, а также 95% доверительный интервал.
Гистограммы показывают результаты двух перестановочных анализов. Слева показано распределение коэффициентов Кронбаха, полученных при повторном отборе проб, вместе с их средним значением. Справа показано бутстреп-распределение коэффициентов Кронбаха вместе с его средним значением и бутстреп-значениями 95% доверительного интервала.
Введение
Исследование надежности метрик обучения является важным аспектом в области поведенческих наук. Надежность оценок обучения позволяет оценить стабильность и воспроизводимость результатов, что является ключевым для интерпретации данных и принятия обоснованных решений.
Подход
В данном исследовании использовались различные методы вычисления надежности, включая коэффициент Кронбаха, корреляцию Пирсона, доверительные интервалы и бутстреп-анализ. Эти методы позволили получить комплексное представление о надежности метрик обучения на основе времени реакции и точности.
Заключение
Результаты исследования показали, что использование различных методов вычисления надежности позволяет получить более точное и надежное представление о метриках обучения. Это особенно важно для поведенческих исследований, где надежность данных играет ключевую роль в интерпретации результатов.