
Интересное сегодня
Как когнитивно-поведенческая терапия (КПТ) помогает при соци...
Как КПТ помогает при социальной тревожности? Когнитивно-поведенческая терапия (КПТ) помогает при соц...
Эффективность в избыточности: как дублирование когнитивных с...
Введение Многие естественные и созданные человеком системы характеризуются наличием избыточности. В ...
Влияние посттравматического стрессового расстройства на эпил...
Введение Посттравматическое стрессовое расстройство (ПТСР) чаще встречается у пациентов с другорезис...
Как препараты для лечения диабета могут помочь в борьбе с за...
Неожиданные открытия в лечении зависимостей «Иногда свет истины открывается в самых неожиданных мест...
Влияние псилоцибина на духовное и психологическое благополуч...
Введение в исследование псилоцибина Новое исследование, опубликованное в рецензируемом журнале "Psy...
Как когнитивные способности влияют на длину естественной реч...
Введение Исследование изучает влияние когнитивных способностей и социодемографических факторов на дл...
Введение
В зрительной коре приматов визуальная информация обрабатывается в иерархически организованных параллельных путях. В первичной зрительной коре (V1) и вторичной зрительной области (V2) информация о цвете и ориентации обрабатывается в разных модулях. В высших зрительных областях цвет и форма также обрабатываются раздельно. Однако механизмы такой функциональной сегрегации остаются не до конца изученными.
Методы
Архитектура сети
В исследовании использовалась модифицированная версия AlexNet — 2SFP-AlexNet (Two-Streams Fully Parallel AlexNet), где все сверточные слои (conv1–5) были параллелизованы. Фильтры инициализировались случайными значениями, а обучение проводилось на базе ImageNet (1000 категорий).
Анализ фильтров
Свойства фильтров conv1 анализировались через:
- Цветовой индекс — мера избирательности к цвету.
- Ориентационный индекс — чувствительность к направлению.
- Предпочитаемую пространственную частоту (SF).
Для фильтров conv2–5 использовались «наиболее эффективные стимулы» (MES), генерируемые методом градиентного восхождения.
Результаты
Сегрегация в conv1
После обучения в 75% случаев цветовая информация отделялась от ориентационной:
- Один поток содержал цветоселективные фильтры с низкой SF.
- Другой — ориентационно-селективные фильтры с высокой SF.
«Корреляция между цветовым и ориентационным индексами была отрицательной (r = −0.57), что подтверждает разделение функций».
Роль потоков в классификации
Удаление цветового потока снижало точность распознавания анимированных изображений (AUC = 0.67, p < 0.001), тогда как удаление потока формы влияло на все категории.
Обсуждение
Результаты согласуются с организацией зрительной коры:
- Сегрегация цвет/форма аналогична модулям V1 и V2.
- Связь цветового потока с анимированными объектами соответствует данным о вентральном пути.
Ограничения включают зависимость от базы ImageNet и использование классических архитектур (AlexNet, VGG).
Заключение
Параллельные CNN спонтанно воспроизводят функциональную сегрегацию, характерную для биологических систем. Это открывает новые возможности для моделирования зрительного восприятия и оптимизации ИИ.